伺服電機工作原理:伺服主要靠脈沖來定位,基本上可以這樣理解,伺服電機接收到1個脈沖,就會旋轉1個脈沖對應的角度,從而實現位移,因為,伺服電機本身具備發出脈沖的功能,所以伺服電機每旋轉一個角度,都會發出對應數量的脈沖,這樣,和伺服電機接受的脈沖形成了呼應,或者叫閉環,如此一來,系統就會知道發了多少脈沖給伺服電機,同時又收了多少脈沖回來,這樣,就能夠很精確的控制電機的轉動,從而實現精確的定位,可以達到0.001mm。 
步進電機工作原理:步進電機是將電脈沖信號轉變為角位移或線位移的開環控制元步進電機件。在非超載的情況下,電機的轉速、停止的位置只取決于脈沖信號的頻率和脈沖數,而不受負載變化的影響,當步進驅動器接收到一個脈沖信號,它就驅動步進電機按設定的方向轉動一個固定的角度,稱為“步距角”,它的旋轉是以固定的角度一步一步運行的。可以通過控制脈沖個數來控制角位移量,從而達到準確定位的目的;同時可以通過控制脈沖頻率來控制電機轉動的速度和加速度,從而達到調速的目的。 
伺服電機與步進電機的區別: 1.控制的方式不同 步進電機是通過控制脈沖的個數控制轉動角度的,一個脈沖對應一個步距角。 伺服電機是通過控制脈沖時間的長短控制轉動角度的。 2.控制系統不同 伺服電機是閉環系統,便于自動化控制。 步進電機是開環系統,動作不可控。 3.工作流程不同 步進電機是一個脈沖發生器,一個步進電機,一個驅動器(驅動器設定步距角角度,如設定步距角為 0.45°,這時,給一個脈沖,電機走0.45°)。 伺服電機為一個供電電源開關(繼電器開關或繼電器板卡),一個驅動器、一個伺服電機。 4.低頻特性不同 步進電機在低速時易出現低頻振動現象。振動頻率與負載情況和驅動器性能有關,一般認為振動頻率為電機空載起跳頻率的一半。這種由步進電機的工作原理所決定的低頻振動現象對于機器的正常運轉非常不利。當步進電機工作在低速時,一般應采用阻尼技術來克服低頻振動現象,比如在電機上加阻尼器,或驅動器上采用細分技術等。交流伺服電機運轉非常平穩,即使在低速時也不會出現振動現象。交流伺服系統具有共振抑制功能,可涵蓋機械的剛性不足,并且系統內部具有頻率解析機能(FFT),可檢測出機械的共振點,便于系統調整。 5.矩頻特性不同 步進電機的輸出力矩隨轉速升高而下降,且在較高轉速時會急劇下降,所以其****工作轉速一般在300~600r/min。交流伺服電機為恒力矩輸出,即在其額定轉速(一般為2000或3000r/min)以內,都能輸出額定轉矩,在額定轉速以上為恒功率輸出。 6.過載能力不同 步進電機一般不具有過載能力。交流伺服電機具有較強的過載能力。以松下交流伺服系統為例,它具有速度過載和轉矩過載能力。其****轉矩為額轉矩的3倍,可用于克服慣性負載在啟動瞬間的慣性力矩。(步進電機因為沒有這種過載能力,在選型時為了克服這種慣性力矩,往往需要選取較大轉矩的電機,而機器在正常工作期間又不需要那么大的轉矩,便出現了力矩浪費的現象) 7.速度響應性能不同 步進電機從靜止加速到工作轉速(一般為每分鐘幾百轉)需要200~400ms。交流伺服系統的加速性能較好,以松下MSMA400W 交流伺服電機為例,從靜止加速到其額定轉速 3000r/min。僅需幾ms,可用于要求快速啟停的控制場合。 
|