
伺服驅動系統(ServoSystem)簡稱伺服系統,是一種以機械位置或角度作為控制對象的自動控制系統,例如數控機床等。使用在伺服系統中的驅動電機要求具有響應速度快、定位準確、轉動慣量(使用在機電系統中的伺服電機的轉動慣量較大,為了能夠和絲杠等機械部件直接相連。 伺服電機有一種專門的小慣量電機,為了得到極高的響應速度。但這類電機的過載能力低,當使用在進給伺服系統中時,必須加減速裝置。轉動慣量反映了系統的加速度特性,在選擇伺服電機時,系統的轉動慣量不能大于電機轉動慣量的3倍。)較大等特點,這類專用的電機稱為伺服電機。
當然,其基本工作原理和普通的交直流電機沒有什么不同。該類電機的專用驅動單元稱為伺服驅動單元,有時簡稱為伺服,一般其內部包括電流、速度和/或位置閉環。
伺服(Servo)是一個性能上的名詞,一般只要主令和控制結果的近似達到了一定高的程度就能稱為伺服,這和機器的結構沒有直接的關系。例如伺服系統都沒有精確的慣量匹配的范圍,這是因為慣量匹配的結果只要不影響控制對象對主令跟隨或影響不大就好了,跟具體是3還是3.5沒有關系。伺服系統也不一定是電機系統,有的氣動系統就稱為氣動伺服。
伺服系統本質上是一種隨動系統。只不過被控量是位移或是其對時間的導數。如果要問什么是隨動系統,就是一個系統的輸出盡可能以最快,最精確的方式復現輸入信號。其衡量的指標有超調量、延遲。
伺服系統有三種控制方式:速度控制方式,轉矩控制方式,位置控制方式。速度控制和轉矩控制都是用模擬量來控制的,位置控制是通過發脈沖來控制的。

轉矩控制:
轉矩控制方式是通過外部模擬量的輸入或直接的地址的賦值來設定電機軸對外的輸出轉矩的大小,具體表現為例如10V對應5Nm的話,當外部模擬量設定為5V時電機軸輸出為2.5Nm:如果電機軸負載低于2.5Nm時電機正轉,外部負載等于2.5Nm時電機不轉,大于2.5Nm時電機反轉(通常在有重力負載情況下產生)。可以通過即時的改變模擬量的設定來改變設定的力矩大小,也可通過通訊方式改變對應的地址的數值來實現。
應用主要在對材質的受力有嚴格要求的纏繞和放卷的裝置中,例如饒線裝置或拉光纖設備,轉矩的設定要根據纏繞的半徑的變化隨時更改以確保材質的受力不會隨著纏繞半徑的變化而改變。
位置控制:
位置控制模式一般是通過外部輸入的脈沖的頻率來確定轉動速度的大小,通過脈沖的個數來確定轉動的角度,也有些伺服可以通過通訊方式直接對速度和位移進行賦值。由于位置模式可以對速度和位置都有很嚴格的控制,所以一般應用于定位裝置。 速度模式:
通過模擬量的輸入或脈沖的頻率都可以進行轉動速度的控制,在有上位控制裝置的外環PID控制時速度模式也可以進行定位,但必須把電機的位置信號或直接負載的位置信號給上位反饋以做運算用。位置模式也支持直接負載外環檢測位置信號,此時的電機軸端的編碼器只檢測電機轉速,位置信號就由直接的最終負載端的檢測裝置來提供了,這樣的優點在于可以減少中間傳動過程中的誤差,增加了整個系統的定位精度。



相關精彩文章:
伺服電機一些常見的故障現象和處理方法
3.8KW大功率大扭矩高轉速交流伺服電機
當下市場上銷售最火的750W時代超群伺服電機
|